2,826 research outputs found

    Unfolding of eigenvalue surfaces near a diabolic point due to a complex perturbation

    Full text link
    The paper presents a new theory of unfolding of eigenvalue surfaces of real symmetric and Hermitian matrices due to an arbitrary complex perturbation near a diabolic point. General asymptotic formulae describing deformations of a conical surface for different kinds of perturbing matrices are derived. As a physical application, singularities of the surfaces of refractive indices in crystal optics are studied.Comment: 23 pages, 7 figure

    Control of superluminal transit through a heterogeneous medium

    Full text link
    We consider pulse propagation through a two component composite medium (metal inclusions in a dielectric host) with or without cavity mirrors. We show that a very thin slab of such a medium, under conditions of localized plasmon resonance, can lead to significant superluminality with detectable levels of transmitted pulse. A cavity containing the heterogeneous medium is shown to lead to subluminal-to-superluminal transmission depending on the volume fraction of the metal inclusions. The predictions of phase time calculations are verified by explicit calculations of the transmitted pulse shapes. We also demonstrate the independence of the phase time on system width and the volume fraction under specific conditions.Comment: 21 Pages,5 Figures (Published in Journal of Modern Optics

    The high-lying 6^6Li levels at excitation energy around 21 MeV

    Get PDF
    The 3^3H+3^3He cluster structure in 6^6Li was investigated by the 3^3H(α\alpha,3^3H 3^3He)n kinematically complete experiment at the incident energy EαE_\alpha = 67.2 MeV. We have observed two resonances at ExE_x^* = 21.30 and 21.90 MeV which are consistent with the 3^3He(3^3H, γ\gamma)6^6Li analysis in the Ajzenberg-Selove compilation. Our data are compared with the previous experimental data and the RGM and CSRGM calculations.Comment: 12 pages, 6 figures. Accepted for publication in J. Phys. Soc. Jp

    Limits on Dark Matter Effective Field Theory Parameters with CRESST-II

    Full text link
    CRESST is a direct dark matter search experiment, aiming for an observation of nuclear recoils induced by the interaction of dark matter particles with cryogenic scintillating calcium tungstate crystals. Instead of confining ourselves to standard spin-independent and spin-dependent searches, we re-analyze data from CRESST-II using a more general effective field theory (EFT) framework. On many of the EFT coupling constants, improved exclusion limits in the low-mass region (< 3-4 GeV) are presented.Comment: 7 pages, 9 figure

    First results from the CRESST-III low-mass dark matter program

    Full text link
    The CRESST experiment is a direct dark matter search which aims to measure interactions of potential dark matter particles in an earth-bound detector. With the current stage, CRESST-III, we focus on a low energy threshold for increased sensitivity towards light dark matter particles. In this manuscript we describe the analysis of one detector operated in the first run of CRESST-III (05/2016-02/2018) achieving a nuclear recoil threshold of 30.1eV. This result was obtained with a 23.6g CaWO4_4 crystal operated as a cryogenic scintillating calorimeter in the CRESST setup at the Laboratori Nazionali del Gran Sasso (LNGS). Both the primary phonon/heat signal and the simultaneously emitted scintillation light, which is absorbed in a separate silicon-on-sapphire light absorber, are measured with highly sensitive transition edge sensors operated at ~15mK. The unique combination of these sensors with the light element oxygen present in our target yields sensitivity to dark matter particle masses as low as 160MeV/c2^2.Comment: 9 pages, 9 figure

    Exploring CEvNS with NUCLEUS at the Chooz Nuclear Power Plant

    Full text link
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) offers a unique way to study neutrino properties and to search for new physics beyond the Standard Model. Nuclear reactors are promising sources to explore this process at low energies since they deliver large fluxes of (anti-)neutrinos with typical energies of a few MeV. In this paper, a new-generation experiment to study CEν\nuNS is described. The NUCLEUS experiment will use cryogenic detectors which feature an unprecedentedly low energy threshold and a time response fast enough to be operated in above-ground conditions. Both sensitivity to low-energy nuclear recoils and a high event rate tolerance are stringent requirements to measure CEν\nuNS of reactor antineutrinos. A new experimental site, denoted the Very-Near-Site (VNS) at the Chooz nuclear power plant in France is described. The VNS is located between the two 4.25 GWth_{\mathrm{th}} reactor cores and matches the requirements of NUCLEUS. First results of on-site measurements of neutron and muon backgrounds, the expected dominant background contributions, are given. In this paper a preliminary experimental setup with dedicated active and passive background reduction techniques is presented. Furthermore, the feasibility to operate the NUCLEUS detectors in coincidence with an active muon-veto at shallow overburden is studied. The paper concludes with a sensitivity study pointing out the promising physics potential of NUCLEUS at the Chooz nuclear power plant

    Strategies for Real-Time Position Control of a Single Atom in Cavity QED

    Get PDF
    Recent realizations of single-atom trapping and tracking in cavity QED open the door for feedback schemes which actively stabilize the motion of a single atom in real time. We present feedback algorithms for cooling the radial component of motion for a single atom trapped by strong coupling to single-photon fields in an optical cavity. Performance of various algorithms is studied through simulations of single-atom trajectories, with full dynamical and measurement noise included. Closed loop feedback algorithms compare favorably to open-loop "switching" analogs, demonstrating the importance of applying actual position information in real time. The high optical information rate in current experiments enables real-time tracking that approaches the standard quantum limit for broadband position measurements, suggesting that realistic active feedback schemes may reach a regime where measurement backaction appreciably alters the motional dynamics.Comment: 12 pages, 10 figures, submitted to J. Opt. B Quant. Semiclass. Op

    Measurements of Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Measurements of transverse energy flow are presented for neutral current deep-inelastic scattering events produced in positron-proton collisions at HERA. The kinematic range covers squared momentum transfers Q^2 from 3.2 to 2,200 GeV^2, the Bjorken scaling variable x from 8.10^{-5} to 0.11 and the hadronic mass W from 66 to 233 GeV. The transverse energy flow is measured in the hadronic centre of mass frame and is studied as a function of Q^2, x, W and pseudorapidity. A comparison is made with QCD based models. The behaviour of the mean transverse energy in the central pseudorapidity region and an interval corresponding to the photon fragmentation region are analysed as a function of Q^2 and W.Comment: 26 pages, 8 figures, submitted to Eur. Phys.
    corecore